Test Report

No.: CE/2018/37465
Date: 2018/04/09

KESTER AN ILLINOIS TOOL WORKS COMPANY
800 W. THORNADE AVE. ITASCA, IL 60143

The following samples was/were submitted and identified by/on behalf of the applicant as:

Sample Submitted By: KESTER AN ILLINOIS TOOL WORKS COMPANY
Sample Description: 952-D6
Style/Item No.: IC180210
Sample Receiving Date: 2018/03/29
Testing Period: 2018/03/29 TO 2018/04/09

Test Requested:

1. As specified by client, with reference to RoHS 2011/65/EU Annex II and amending Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

2. Please refer to next pages for the other item(s).

Test Result(s):

Please refer to following pages.

Conclusion:

1. Based on the performed tests on submitted sample(s), the test results of Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as set by RoHS and amending Directive (EU) 2015/863.
Test Report
No. : CE/2018/37465 Date : 2018/04/09 Page : 2 of 8

KESTER AN ILLINOIS TOOL WORKS COMPANY
800 W. THORNADE AVE. ITASCA, IL 60143

Test Result(s)

PART NAME No.1 : TRANSPARENT LIQUID

<table>
<thead>
<tr>
<th>Test Item(s)</th>
<th>Unit</th>
<th>Method</th>
<th>MDL</th>
<th>Result No.1</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-5 (2013) and performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
<td>100</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-5 (2013) and performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-7-2 (2017) and performed by UV-VIS.</td>
<td>8</td>
<td>n.d.</td>
<td>1000</td>
</tr>
<tr>
<td>Hexavalent Chromium Cr(VI)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-6 (2015) and performed by GC/MS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of PBBs</td>
<td>mg/kg</td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Monobromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Dibromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Tribromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Tetrabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Pentabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Hexabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Heptabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Octabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Nonabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Decabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Sum of PBDEs</td>
<td>mg/kg</td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Monobromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Dibromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Tribromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Tetrabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Pentabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Hexabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Heptabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Octabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Nonabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Decabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
<td>-</td>
</tr>
</tbody>
</table>
Test Report

No.: CE/2018/37465
Date: 2018/04/09

KESTER AN ILLINOIS TOOL WORKS COMPANY
800 W. THORNADE AVE. ITASCA, IL 60143

<table>
<thead>
<tr>
<th>Test Item(s)</th>
<th>Unit</th>
<th>Method</th>
<th>MDL</th>
<th>Result No.1</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halogen-Fluorine (F) (CAS No.: 14762-94-8)</td>
<td>mg/kg</td>
<td>With reference to BS EN 14582 (2016). Analysis was performed by IC.</td>
<td>50</td>
<td>955</td>
<td>-</td>
</tr>
<tr>
<td>Halogen-Chlorine (Cl) (CAS No.: 22537-15-1)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Halogen-Bromine (Br) (CAS No.: 10097-32-2)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>Halogen-Iodine (I) (CAS No.: 14362-44-8)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>DBP (Dibutyl phthalate) (CAS No.: 84-74-2)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>1000</td>
</tr>
<tr>
<td>BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>1000</td>
</tr>
<tr>
<td>DEHP (Di-(2-ethylhexyl) phthalate) (CAS No.: 117-81-7)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>1000</td>
</tr>
<tr>
<td>DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0; 68515-49-1)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.</td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>DINP (Di-isononyl phthalate) (CAS No.: 28553-12-0; 68515-48-0)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td>DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
<td>1000</td>
</tr>
</tbody>
</table>

Note:

1. mg/kg = ppm; 0.1wt% = 1000ppm
2. MDL = Method Detection Limit
3. n.d. = Not Detected = less than MDL
4. " - " = Not Regulated

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ test method excluded)

- Technician: JR Wang
- Supervisor: Troy Chang

Cutting - Preparation

- Sample Measurement

- **Pb/Cd/Hg**
 - Acid digestion with microwave / hotplate
 - Filtration
 - Solution
 - 1) Alkali fusion
 - 2) HCl to dissolve
 - ICP-AES

- **Cr⁴⁺**
 - Non-metal
 - Metal
 - ABS / PC / PVC
 - Others

- **Cr⁶⁺**
 - Digesting at 150~160°C
 - Digesting at 60°C by ultrasonication
 - Separating to get aqueous phase
 - pH adjustment
 - Add diphenyl-carbazide for color development
 - Measure the absorbance at 540 nm by UV-VIS

- **Boiling water extraction**
 - Cool, filter digestate through filter
 - Add diphenyl-carbazide for color development
 - Measure the absorbance at 540 nm by UV-VIS

- **Cr⁶⁺**
 - Digesting at 150~160°C
 - Digesting at 60°C by ultrasonication
 - Separating to get aqueous phase
 - pH adjustment
 - Add diphenyl-carbazide for color development
 - Measure the absorbance at 540 nm by UV-VIS

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁺⁺ test method excluded)
Analytical flow chart – PBB / PBDE

First testing process
Optional screen process
Confirmation process

Sample → Sample pretreatment

Screen analysis

Sample extraction / Soxhlet method

Concentrate/Dilute
Extracted solution

Filter

GC/MS

Technician: Yaling Tu
Supervisor: Troy Chang

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Analytical flow chart - Halogen

- Technician: Rita Chen
- Supervisor: Troy Chang

1. Sample pretreatment / Separation
2. Weighting and putting sample in cell
3. Oxygen Bomb Combustion / Absorption
4. Dilution to fixed volume
5. Analysis was performed by IC

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Analytical flow chart - Phthalate

- Technician: Andy Hsu
- Supervisor: Troy Chang

[Test method: IEC 62321-8]

1. Sample pretreatment/separation
2. Sample dissolved/extracted by THF
3. Dilute Extracted solution
4. Analysis was performed by GC/MS

Test Report

No. : CE/2018/37465
Date : 2018/04/09
KESTER AN ILLINOIS TOOL WORKS COMPANY
800 W. THORNDALE AVE. ITASCA, IL 60143

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions-for-Electronic-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Test Report No. : CE/2018/37465 Date : 2018/04/09

KESTER AN ILLINOIS TOOL WORKS COMPANY
800 W. THORNADE AVE. ITASCA, IL 60143

* The tested sample / part is marked by an arrow if it’s shown on the photo. *

CE/2018/37465

** End of Report **