Product Description

Kester 2235 is a high activity 11% solids organic flux designed for automated soldering of circuit board assemblies where a more aggressive flux is required, but reliability considerations are paramount. 2235, a flux with comparably low solids in respect to other fluxes in the same category, will produce fewer skips on the bottom side surface mount pads. The residue after soldering is effectively removed in standard water cleaning systems. Although possessing high activity, boards exhibit high ionic cleanliness after water cleaning, exceeding the requirements of MIL-P-28809. No offensive odors or excessive smoke are emitted during soldering. The flux will not create excessive foaming in standard water cleaning systems. 2235 is classified as ORH1 under IPC J-STD-004.

Performance Characteristics:
- Minimizes icicling and bridging
- Chemically compatible with most solder masks and board laminates
- Excellent choice for surface mount boards
- High ionic cleanliness and no surface insulation resistance degradation
- Classified as ORH1 under J-STD-004
- High activity

RoHS Compliance

This product meets the requirements of the Restriction of Hazardous Substances (RoHS) Directive. Additional RoHS information is located at https://www.kester.com/downloads/environmental.

Physical Properties

- **Specific Gravity:** 0.856 ± 0.005
 Anton Parr DMA @ 25°C
- **Percent Solids (theoretical):** 11%
 Tested to J-STD-004, IPC-TM-650, Method 2.3.34
- **Flash Point:** 16°C (60°F)

Reliability Properties

- **Copper Mirror Corrosion:** High
- **Corrosion Test:** High
 Tested to J-STD-004, IPC-TM-650, Method 2.6.15
- **Silver Chromate:** Fail
 Tested to J-STD-004, IPC-TM-650, Method 2.3.33
- **Chloride and Bromides:** 1.6%
 Tested to J-STD-004A, IPC-TM-650, Method 2.3.35
- **Fluorides by Spot Test:** Pass
 Tested to J-STD-004, IPC-TM-650, Method 2.3.35.1
- **SIR, IPC (Typical):** Pass
 Tested to J-STD-004, IPC-TM-650, Method 2.6.3.3

<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
<th>2235</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>7.9*10^9 Ω</td>
<td>9.7*10^9 Ω</td>
</tr>
<tr>
<td>Day 4</td>
<td>5.3*10^9 Ω</td>
<td>2.1*10^9 Ω</td>
</tr>
<tr>
<td>Day 7</td>
<td>4.7*10^9 Ω</td>
<td>2.6*10^9 Ω</td>
</tr>
</tbody>
</table>

Global Headquarters: 800 West Thorndale Avenue, Itasca, IL USA 60143
Phone: +1 800.2.KESTER
Fax: +1 630.616.4044

Asia-Pacific Headquarters: 61 Ubi Avenue 1 #06-01 UB Point, Singapore 408941
Phone: +65 6.449.1133
Fax: +65 6.242.9036

European Headquarters: Ganghofer Strasse 45, 82216 Gerrlingen, Germany
Phone: +49 (0) 8142 4785 0
Fax: +49 (0) 8142 4785 61

Asia Manufacturing: Hengqiao Road, Wujiang Economic Development Zone
Suzhou, Jiangsu Province, China 215200
Phone: +86 512.82060807
Fax: +86 512.8206 0808

Website: www.kester.com
Flux Application

2235 can be applied to circuit boards by a spray, foam or dip process. An air knife after the flux tank is recommended to remove excess flux from the circuit board and prevent dripping on the preheater surface.

Process Considerations

The optimum preheat temperature for most circuit assemblies is 82-104°C (180-220°F) as measured on the top or component side of the printed circuit board. Dwell time in the wave is typically 2-4 seconds. The wave soldering speed should be adjusted to accomplish proper preheating and evaporate excess solvent, which could cause spattering. For best results, speeds of 1.1-1.8 m/min (3.5-6 ft/min) are used. The surface tension has been adjusted to help the flux form a thin film on the board surface allowing rapid solvent evaporation.

Flux Control

Specific gravity is normally the most reliable method to control the flux concentration. To check concentration, a hydrometer should be used. Control of the flux in the foam flux tank during use is necessary for assurance of consistent flux distribution on the circuit boards. The complex nature of the solvent system for the flux makes it imperative that Kester 4662 Thinner be used to replace evaporative losses. When excessive debris from circuit boards, such as board fibers and from the air line build up in the flux tank, these particulates will redeposit on the circuit boards which may create a build up of residues on probe test pins. It is, therefore, necessary to clean the tank and then replenish it with fresh flux when excessive debris accumulates in the flux tank.

Cleaning

No neutralizer, saponifiers or detergents are necessary in the water wash system for complete removal of flux residues. It is not recommended to use high mineral content tap water. Otherwise, tap, deionized or softened water may be used for cleaning. The optimum water temperature is 54-66°C (130-150°F), although lower temperatures may be sufficient.

Storage, Handling and Shelf Life

2235 is flammable. Store away from sources of ignition. Shelf life is 2 years from the date of manufacture when handled properly and held at 10-25°C (50-77°F).

Health and Safety

This product, during handling or use, may be hazardous to your health or the environment. Read the Safety Data Sheet and warning label before using this product. Safety Data Sheets are available at https://www.kester.com/downloads/sds.