1865-HPS
Low-Solids No-Clean Liquid Flux

Product Description

Kester 1865-HPS is a low solid, no-clean flux that is specially designed for use in the electronic industry to improve effectiveness in the wave soldering of conventional circuit board assemblies. It provides good solderability leaving behind shiny solder joints. Minimal amount of residue remains after soldering and the unique attribute of 1865-HPS is that the residue is non-conductive, non-corrosive and tack-free, therefore removal is not needed. Hence it is possible for the residue to be left on the boards without degrading the reliability of the assembly. Boards are cosmetically clean as they exit the wave solder machine, thus posing no interference with electrical testing. This formula conforms to the strictest requirements of J-STD-004 specifications with a Type ROM0 flux classification.

Performance Characteristics:
- Excellent cosmetic appearance
- Non-corrosive, non-conductive and tack-free residues
- Low odor
- Minimizes micro-solderballing at connectors and CPU and bridging by providing a clean snap-off during wave soldering
- Bright, shiny solder connections
- Provides good solderability on surface mount circuit boards under air wave soldering
- No surface insulation degradation
- Suitable for leaded and lead-free (SnCu and SnAgCu) alloys
- Eliminates the need and expense of cleaning
- Classified as ROM0 per J-STD-004

Physical Properties

Specific Gravity: 0.803 ± 0.005
Anton Paar DMA 35 @ 25°C

Percent Solids (theoretical): 4.25

Acid Number (typical): 35.0 mg KOH/g of flux
Tested by potentiometric titration

Thinner: Kester 108-S

Reliability Properties

Copper Mirror Corrosion: Moderate
Tested to J-STD-004, IPC-TM-650, Method 2.3.32

Corrosion Test: Moderate
Tested to J-STD-004, IPC-TM-650, Method 2.6.15

Silver Chromate: Pass
Tested to J-STD-004, IPC-TM-650, Method 2.3.33

Fluorides by Spot Test: Pass
Tested to J-STD-004, IPC-TM-650, Method 2.3.35.1

S.I.R., IPC (typical): Pass
Tested to J-STD-004, IPC-TM-650, Method 2.6.3.3
Flux Application:
Kester 1865-HPS is specially designed for spray fluxing. Flux deposition should be 120-240µg of solids/cm² (750-1500 µg of solids/in²). An air knife after the flux tank is recommended to remove excess flux from the circuit board and prevent dipping on the preheater surface.

Process Considerations:
The optimum preheat temperature for most circuit assemblies is 90-110°C (194-230°F), as measured on the top or component side of the assembly. The optimum preheat temperature for most circuit assemblies is 110-150°C (230-302°F), as measured at the bottom or component side of the assembly. It is still important to note that the optimum preheat temperature for a given assembly will depend on the circuit board design, board thickness, length of contact time with molten solder, solder wave shape, speed of solder flow and preheating time.

Dwell time in the wave is typically 2-4 seconds. The wave soldering speed should be adjusted to accomplish proper preheating and evaporate excess solvent, which could cause spattering. For best results, speeds of 1.1-1.8 m/min (3½-6 ft/min) are used. The surface tension has been adjusted to help the flux form a thin film on the board surface allowing rapid solvent evaporation. The solderpot temperature is recommended to be 245-260°C (473-500°F) for Sn63Pb37 alloy and 260-270°C (500-518°F) for SnCu or SnAgCu alloys.

Above information is a guideline and it is advisable to note that the optimum settings for a given assembly may vary and this is dependent on the circuit board design, board thickness, components used and equipment used. A design of experiment is recommended to be done to optimize the soldering process.

Flux Control:
Control of the flux in the foam flux tank during use is necessary for assurance of consistent flux distribution on the circuit boards. The complex nature of the solvent system for the flux makes it imperative that Kester 108-S Thinner be used to replace evaporative losses. When excessive debris from circuit boards, such as board fibers and from the air line build up in the flux tank, these particulates will redeposit on the circuit boards which may create a build up of residues on probe test pins. It is, therefore, necessary to clean the tank and then replenish it with fresh flux when excessive debris accumulates in the flux tank. Incoming solderability inspection of circuit boards and components is advisable as a part of process control to maintain consistent soldering results.

Acid number is normally the most reliable method to control the flux concentration of low solids, no-clean fluxes. To check concentration, a simple acid-base titration should be used. Kester PS-20 test kit method gives a more accurate procedure than the use of auto-density controller in the determination of flux concentration. The test method is outlined as follows:

1. Dispense 5 ml of Kester PS-20 test kit solution into the test tube. The test tube has a 5 ml mark on it to facilitate this measurement. Add one drop of indicator, cap the test-tube and shake. The solution will change to a pink colour.
2. Using a dropper, a sample from the flux tank is then drawn and added to the test solution in the test tube, dropwise by counting exactly 9 drops. The dropper must be held in a vertical position.
3. Replace the stopper to the test tube and mix by shaking.
4. Observe the colour of the solution: some turbidity may be present, and this is acceptable. If the solution is pink, proceed to Step 5. If the solution is colourless (with or without turbidity), then proceed to Step 8.
5. Remove the stopper and add 1 more drop of flux using the same dropper.
6. Replace the stopper on the test tube and mix by shaking.
7. Observe the colour of the solution. If the solution is pink, return to Step 5. Repeat Step 5 and 6 until the solution turns clear. Refer to Table 1 for the proper value of thinner for the flux in use.
8. If the test solution is colourless (with or without turbidity) from Step 4, it is an indication that the flux concentration is too high. The approximate concentration and the corrective action needed can be determined as follows:
 a) Using a fresh test tube, fill with 5 ml of test solution. Add 1 drop of indicator solution. Cap the tube and shake.
 b) Add 6 drops of flux with the dropper provided. Mix by shaking and observed the colour of the solution. If the solution is colourless, a supervisor should be contacted. This is an indication that the flux concentration has exceeded the recommended level. Corrective actions should be taken immediately to drain the flux and replenish it with fresh flux.
 c) Continue adding flux, one drop at a time to the test solution, mixing between each additional drop. Keep count of the total number of drops needed to change the solution from pink to colourless. Using this count, refer to Table 1 for the correct amount of thinner to add to the flux tank.

<table>
<thead>
<tr>
<th>Titer (Number of Drops)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Attention should be given as to how well the flux is performing on the process line. The flux concentration is too low and may need to be adjusted to a higher concentration or entirely replaces with fresh flux.</td>
</tr>
<tr>
<td>17</td>
<td>Attention should be given as to how well the flux is performing on the process line. The flux concentration may be too low and may need to be adjusted with fresh flux.</td>
</tr>
<tr>
<td>14 – 16</td>
<td>No corrective action is needed.</td>
</tr>
<tr>
<td>13</td>
<td>Add 85 ml thinner per gallon (3.8L) of flux.</td>
</tr>
<tr>
<td>12</td>
<td>Add 140 ml thinner per gallon of flux.</td>
</tr>
<tr>
<td>11</td>
<td>Add 200 ml thinner per gallon of flux.</td>
</tr>
<tr>
<td>10</td>
<td>Add 275 ml thinner per gallon of flux.</td>
</tr>
<tr>
<td>9</td>
<td>Replace flux tank with fresh flux.</td>
</tr>
</tbody>
</table>

Cleaning:
Kester 1865-HPS residues are non-conductive, non-corrosive and do not require removal in most applications. If residue removal is required, call Kester Technical Support.

Storage and Shelf Life:
Kester 1865-HPS is flammable. Store away from sources of ignition. Shelf life is 1 year from date of manufacture when handled properly and held at 10-25°C (50-77°F).

Health & Safety:
This product, during handling or use, may be hazardous to health or the environment. Read the Material Safety Data Sheet and warning label before using this product.