

MAPS

IMAPS Flip-Chip 2003, Austin TX

- Test Methodology
- Results & Discussion
 - Process and reliability tests
- Conclusions

Background

9110S Development overview

- 3 year process, defined FCOF optimal behaviors
 - Mechanical, dispense, curing, etc.
 - Developed in partnership with Seagate Technology
- Need for Anti-collapse Behavior
 - Make behavior independent of pad definition
 - Driven by economics
- Pb-free transition
 - New resin & catalyst technology
 - Control of voiding
 - From substrate & (sometimes) component

Background

Basic RE Process Targets

Metric	Target/Rationale
Throughput	>30% increase in line throughput Product cost reduction Fewer steps; higher yield
Product Quality	Equal or better reliability with increased product density
Product Density	Reduce space required for capillary underfill
Floor Space & Equipment	Eliminate post-cure Simplify dispensing process

Two Anti-collapse Approaches

Anti-collapse Beads

- Proven technology
- Simple implementation
- Requires bead diameter tailored to standoff
- bead dispersion must be well understood
 - Die size dependence!

Rheology Control

- More than one way to accomplish this
- Kester chose inorganic viscosity modifiers
- Performance independent of standoff
- Some die size dependence is possible

Anti-Collapse via Beads

Timeline for Development

Test Methodology

- Focused on actual process performance
- Dispense testing performed with Cam/Alot 1414 and DL Tech. Pump
- Placement with Universal GSM
- Reflow with Heller 1700 oven
- X-ray with Fein Focus FOX
- Cross section as required

Dispense Testing

Pattern Repeat Test

- 45-dot pattern repeated every 5 minutes for one hour
- Measure average dispensed weight for each pattern
- Twenty-dot test
 - Measure individual dispense weights to measure repeatability
- Measure anti-collapse materials against baseline material

Dispense Testing

- Rheology-controlled material failed twenty dot test
- Baseline & bead-based materials were equivalent
- Slightly higher volume required for bead-based material

Dispense Testing

	Baseline							
	Set A	Set B	Set C	Set D	Set E			
Total Weight (mg)	91.38	89.73	92.38	92.77	92.92			
Weight per Dot (mg)	2.03	1.99	2.05	2.06	2.06			
-								
	Rheology-controlled							
	Set A	Set B	Set C	Set D	Set E			
Total Weight (mg)	12.48	N/A	N/A	N/A	N/A			
Weight per Dot (mg)	0.27	N/A	N/A	N/A	N/A			
Bead-based								
	Set A	Set B	Set C	Set D	Set E			
Total Weight (mg)	102.85	102.81	103.11	103.23	103.05			
Weight per Dot (mg)	2.29	2.28	2.29	2.29	2.29			

- Rheology-controlled material also failed pattern repeat test
- Again, equivalent performance for baseline vs. bead based material

Soldering Performance X-ray Evaluation Technique

- 2-D x-ray, normal to surface
- Sobel filter applied
- Image inverted
- Normalize background density
- Yields information on wetting and bump mass

Soldering Performance

Baseline Material

Placement Error

Placement

Error

Soldering Performance

Rheology Controlled Material

Soldering Performance

Bead Based Material

Reliability

Reliability Test Matrix

181	1	1	1	I
TEST	<u>T/C</u>	<u>T/S</u>	<u>BTH</u>	<u>HTOL</u>
Sample Size	45	45	45	45
Temperature	-55 to 125 C	-55 to 125 C	85 C	Ta = 125, Tj 150 C
Humdity	= 35%</td <td>NA</td> <td>85%</td> <td>< 25%</td>	NA	85%	< 25%
Rate of Change	10 deg C/min.	20 deg C/min.	NA	NA
Minimum Dwell	5 minutes	6 minutes	168 Hrs	1000 Hrs
Number of Cycles	300 cycles	500 cycles	1	NA
Read Points	100 / 300	200 / 500	168 HRs	168, 500 Hrs
			Low Power	
			Dissipation, Static	Read or write mode out
Bias	NA	NA	or Idle Mode	puts loaded
Parameter Method	Functional Test	Functional Test	Functional Test	Functional Test
Acceptance	C = 0	C = 0	C = 0	C = 0

- Eutectic, bead-based materials have passed all reliability testing to date
 - Thermal Cycle & Thermal Shock complete
- Awaiting final results...
 - BTH & HTOL tests near completion
 - BTH, HTOL were passed previously using same resin system

Kest

Conclusions

- Anti-collapse technology incorporated in RE is most economical approach
 - Eliminate need to incorporate substrate or die features to limit collapse
 - Eliminate need for pad definition
- Two viable approaches to anti-collapse RE for FCOF have been demonstrated
 - Bead-based control
 - Rheology-based control

Conclusions

- Bead-based anti-collapse will be qualified for disc drive applications
 - For Eutectic die, Q3 2003
 - For Pb-free die, Q4 2003
- Rheology-based anti-collapse will also be pursued for the general market.
 - Requires change of filler technology
 - Provides the greatest application flexibility

